Lou Stone Lou Stone
0 Course Enrolled • 0 Course CompletedBiography
DSA-C03合格記 & DSA-C03合格率
購入前にJpshikenが提供した無料のDSA-C03問題集をダウンロードできます。自分の練習を通して、試験のまえにうろたえないでしょう。Jpshikenを選択して専門性の訓練が君のDSA-C03試験によいだと思います。
我々Jpshikenは最高のアフターサービスを提供いたします。SnowflakeのDSA-C03試験ソフトを買ったあなたは一年間の無料更新サービスを得られて、SnowflakeのDSA-C03の最新の問題集を了解して、試験の合格に自信を持つことができます。あなたはSnowflakeのDSA-C03試験に失敗したら、弊社は原因に関わらずあなたの経済の損失を減少するためにもらった費用を全額で返しています。
正確的-一番優秀なDSA-C03合格記試験-試験の準備方法DSA-C03合格率
我々Jpshikenでは、あなたは一番優秀なSnowflake DSA-C03問題集を発見できます。我が社のサービスもいいです。購入した前、弊社はあなたが準備したいDSA-C03試験問題集のサンプルを無料に提供します。購入した後、一年間の無料サービス更新を提供します。Snowflake DSA-C03問題集に合格しないなら、180日内で全額返金します。あるいは、他の科目の試験を変えていいです。
Snowflake SnowPro Advanced: Data Scientist Certification Exam 認定 DSA-C03 試験問題 (Q231-Q236):
質問 # 231
A marketing analyst is building a propensity model to predict customer response to a new product launch. The dataset contains a 'City' column with a large number of unique city names. Applying one-hot encoding to this feature would result in a very high-dimensional dataset, potentially leading to the curse of dimensionality. To mitigate this, the analyst decides to combine Label Encoding followed by binarization techniques. Which of the following statements are TRUE regarding the benefits and challenges of this combined approach in Snowflake compared to simply label encoding?
- A. Label encoding introduces an arbitrary ordinal relationship between the cities, which may not be appropriate. Binarization alone cannot remove this artifact.
- B. Binarizing a label encoded column using a simple threshold (e.g., creating a 'high_city_id' flag) addresses the curse of dimensionality by reducing the number of features to one, but it loses significant information about the individual cities.
- C. While label encoding itself adds an ordinal relationship, applying binarization techniques like binary encoding (converting the label to binary representation and splitting into multiple columns) after label encoding will remove the arbitrary ordinal relationship.
- D. Binarization following label encoding may enhance model performance if a specific split based on a defined threshold is meaningful for the target variable (e.g., distinguishing between cities above/below a certain average income level related to marketing success).
- E. Label encoding followed by binarization will reduce the memory required to store the 'City' feature compared to one-hot encoding, and Snowflake's columnar storage optimizes storage for integer data types used in label encoding.
正解:A、B、D、E
解説:
Option A is true because label encoding converts strings into integers, which are more memory-efficient than storing numerous one-hot encoded columns. Snowflake's columnar storage further optimizes integer storage. Option B is also true; label encoding inherently creates an ordinal relationship that might not be valid for nominal features like city names. Option C is incorrect; simple binarization (e.g., > threshold) of label encoded data doesn't remove the arbitrary ordinal relationship; more complex binarization techniques would be needed. Option D is accurate; binarization reduces dimensionality but sacrifices granularity, leading to information loss. Option E is correct because carefully chosen thresholds might correlate with the target variable and improve predictive power.
質問 # 232
You are performing exploratory data analysis on a large sales dataset in Snowflake using Snowpark. The dataset contains columns such as 'order_id', , and 'profit'. You want to identify the top 5 most profitable products for each month. You have already created a Snowpark DataFrame named 'sales_df. Which of the following Snowpark operations, when combined correctly, will efficiently achieve this?
- A. Use 'rank()' partitioned by ordered by 'sum(profit) DESC' , after grouping by and 'product_id' , and aggregating 'sum(profity.
- B. Use 'ntile(5)' partitioned by ordered by 'sum(profit) DESC' after grouping by and 'product_id', and aggregating 'sum(profit)'.
- C. First, create a temporary table with aggregated monthly profit for each product using SQL. Then, use Snowpark to read the temporary table and apply a window function partitioned by ordered by 'sum(profit) DESC'.
- D. Group by and 'product_id' , aggregate 'sum(profit)' , then use partitioned by ordered by 'sum(profit) DESC'.
- E. Group by 'product_id', aggregate 'sum(profity, then use partitioned by ordered by 'sum(profit) DESC' within a UDF.
正解:D
解説:
Option A correctly describes the process. First group by month and product to calculate total profit, then use with correct partitioning and ordering to assign a rank within each month based on profit. Options B and C use less efficient ranking functions. Option D groups by product globally, missing the monthly granularity. Option E 'ntile' divides products into 5 buckets which is not what we are looking for.
質問 # 233
A data scientist is analyzing website click-through rates (CTR) for two different ad campaigns. Campaign A ran for two weeks and had 10,000 impressions with 500 clicks. Campaign B also ran for two weeks with 12,000 impressions and 660 clicks. The data scientist wants to determine if there's a statistically significant difference in CTR between the two campaigns. Assume the population standard deviation is unknown and unequal for the two campaigns. Which statistical test is most appropriate to use, and what Snowflake SQL code would be used to approximate the p-value for this test (assume 'clicks_b' , and are already defined Snowflake variables)?
- A. A one-sample t-test, because we are comparing the sample mean of campaign A to the sample mean of campaign Snowflake code: 'SELECT t_test_lsamp(clicks_a/impressions_a - clicks_b/impressions_b, 0)'
- B. Az-test, because we know the population standard deviation. Snowflake code: 'SELECT normcdf(clicks_a/impressions_a - clicks_b/impressions_b, O, 1)'
- C. An independent samples t-test, because we are comparing the means of two independent samples. Snowflake code: SELECT
- D. A paired t-test, because we are comparing two related samples over time. Snowflake code: 'SELECT t_test_ind(clicks_a/impressions_a, 'VAR EQUAL-TRUE')
- E. An independent samples t-test (Welch's t-test), because we are comparing the means of two independent samples with unequal variances. Snowflake code (approximation using UDF - assuming UDF 'p_value_from_t_stat' exists that calculates p-value from t-statistic and degrees of freedom):
正解:C
解説:
The correct answer is E. Since we're comparing the means of two independent samples (Campaign A and Campaign B) and the population standard deviations are unknown, an independent samples t-test is appropriate. Because the problem stated that the variances are unequal, Welch's t-test provides a more accurate p-value and confidence intervals. The Snowflake function handles independent samples and the 'VAR_EQUAL=FALSE' parameter specifies that the variances should not be assumed to be equal. The other options are incorrect because they use inappropriate tests given the problem conditions. The z-test is not appropriate because the population standard deviations are unknown. A paired t-test is for related samples. A one sample test is to test one mean against a constant not another mean.
質問 # 234
You are working with a large dataset of sensor readings stored in a Snowflake table. You need to perform several complex feature engineering steps, including calculating rolling statistics (e.g., moving average) over a time window for each sensor. You want to use Snowpark Pandas for this task. However, the dataset is too large to fit into the memory of a single Snowpark Pandas worker. How can you efficiently perform the rolling statistics calculation without exceeding memory limits? Select all options that apply.
- A. Explore using Snowpark's Pandas user-defined functions (UDFs) with vectorization to apply custom rolling statistics logic directly within Snowflake. UDFs allow you to use Pandas within Snowflake without needing to bring the entire dataset client-side.
- B. Utilize the 'window' function in Snowpark SQL to define a window specification for each sensor and calculate the rolling statistics using SQL aggregate functions within Snowflake. Leverage Snowpark to consume the results of the SQL transformation.
- C. Increase the memory allocation for the Snowpark Pandas worker nodes to accommodate the entire dataset.
- D. Use the 'grouped' method in Snowpark DataFrame to group the data by sensor ID, then download each group as a Pandas DataFrame to the client and perform the rolling statistics calculation locally. Then upload back to Snowflake.
- E. Break the Snowpark DataFrame into smaller chunks using 'sample' and 'unionAll', process each chunk with Snowpark Pandas, and then combine the results.
正解:A、B
解説:
Explanation:Options B and D are the most appropriate and efficient solutions for handling large datasets when calculating rolling statistics with Snowpark Pandas. Option B uses the 'window' function in Snowpark SQL. Leverage the 'window' function in Snowpark SQL to define a window specification for each sensor and calculate the rolling statistics using SQL aggregate functions within Snowflake. Option D uses Snowpark's Pandas UDFs. Snowpark's Pandas UDFs with vectorization allow you to bring the processing logic to the data within Snowflake, avoiding the need to move the entire dataset to the client-side and bypassing memory limitations. This approach is generally more scalable and performant for large datasets. Option A is inefficient as it retrieves groups of data from Snowflake to client side before creating the calculations before sending back to snowflake. Option C is correct but complex and not optimal. Option E is possible, but it's not a scalable solution and can be costly.
質問 # 235
You've built a complex machine learning model using scikit-learn and deployed it as a Python UDF in Snowflake. The UDF takes a JSON string as input, containing several numerical features, and returns a predicted probability However, you observe significant performance issues, particularly when processing large batches of data'. Which of the following approaches would be MOST effective in optimizing the performance of this UDF in Snowflake?
- A. Rewrite the UDF in Java or Scala to leverage the JVM's performance advantages over Python in Snowflake.
- B. Serialize the scikit-learn model using 'joblib' instead of 'pickle' for potentially faster deserialization within the UDF.
- C. Increase the warehouse size to improve the overall compute resources available for UDF execution.
- D. Use Snowflake's vectorized UDF feature to process data in micro-batches, minimizing the overhead of repeated Python interpreter initialization.
- E. Pre-process the input data outside of the UDF using SQL transformations, reducing the amount of data passed to the UDF and simplifying the Python code.
正解:D、E
解説:
Vectorized UDFs (A) are designed specifically for performance optimization by processing data in batches, reducing overhead. Pre- processing data using SQL (D) can significantly reduce the complexity and data volume handled by the UDF. While 'joblib' (B) might offer a slight improvement, it's less impactful than vectorization. Increasing warehouse size (C) helps but doesn't address the underlying inefficiencies of repeated interpreter initialization. Rewriting in Java/Scala (E) is a viable option but requires significant effort and might not be necessary if vectorization and pre-processing are sufficient.
質問 # 236
......
当社Jpshikenのソフトウェアを練習するには20〜30時間しかかからず、試験に参加できます。 DSA-C03学習の質問を学ぶのに時間を費やす必要はありません。また、毎日DSA-C03ガイド急流を学ぶのに数時間しかかかりません。 DSA-C03試験の質問は効率的であり、DSA-C03試験に簡単に合格できることを保証できます。 しかし、当社のDSA-C03試験トレントを購入すると、時間と労力を節約でき、他のことをするための時間を節約できます。
DSA-C03合格率: https://www.jpshiken.com/DSA-C03_shiken.html
Snowflake DSA-C03合格記 やってみて第一歩を進める勇気があります、私たちのDSA-C03 SnowPro Advanced: Data Scientist Certification Exam学習ガイドを選んでください、Snowflake DSA-C03合格記 ソフトウェアバージョンの機能は非常に特殊です、最近のDSA-C03ガイド急流の効果が資格試験を通じて受験者の秘密兵器になったことを示した後、DSA-C03トレーニング資料を勉強して「テストデータ」を書くことがあなたの選択に最適です、お客様は問題集を購入する時、問題集の質量を心配するかもしれませんが、我々はこのことを解決するために、お客様に無料DSA-C03サンプルを提供いたします、弊社のDSA-C03問題集で試験の100%パスできることを保証いたします。
庄しょう九郎くろうは、 はて、平手ひらて中務なかつかさが と、くびをDSA-C03ひねった、自分のあのお化けの絵を、こいつに見せたら、どんな顔をするだろう、とれいの空転の身悶(みもだ)えをしながら、 それを言ってくれるな。
試験の準備方法-一番優秀なDSA-C03合格記試験-検証するDSA-C03合格率
やってみて第一歩を進める勇気があります、私たちのDSA-C03 SnowPro Advanced: Data Scientist Certification Exam学習ガイドを選んでください、ソフトウェアバージョンの機能は非常に特殊です、最近のDSA-C03ガイド急流の効果が資格試験を通じて受験者の秘密兵器になったことを示した後、DSA-C03トレーニング資料を勉強して「テストデータ」を書くことがあなたの選択に最適です。
お客様は問題集を購入する時、問題集の質量を心配するかもしれませんが、我々はこのことを解決するために、お客様に無料DSA-C03サンプルを提供いたします。
- 効果的なDSA-C03合格記と認定するDSA-C03合格率 🔈 ⮆ www.goshiken.com ⮄から簡単に➤ DSA-C03 ⮘を無料でダウンロードできますDSA-C03関連資料
- DSA-C03認定試験 😭 DSA-C03日本語サンプル 🕧 DSA-C03日本語サンプル 🔸 ➥ www.goshiken.com 🡄にて限定無料の⮆ DSA-C03 ⮄問題集をダウンロードせよDSA-C03受験トレーリング
- 便利なDSA-C03合格記 - 合格スムーズDSA-C03合格率 | 有効的なDSA-C03ファンデーション 📈 「 www.japancert.com 」から☀ DSA-C03 ️☀️を検索して、試験資料を無料でダウンロードしてくださいDSA-C03資格認定試験
- Snowflake DSA-C03:SnowPro Advanced: Data Scientist Certification Exam試験をよく準備されたDSA-C03合格記で効果的に研究する 👝 ➠ DSA-C03 🠰を無料でダウンロード【 www.goshiken.com 】で検索するだけDSA-C03受験対策書
- ユニークなDSA-C03合格記試験-試験の準備方法-最高のDSA-C03合格率 🟣 ➤ www.japancert.com ⮘で[ DSA-C03 ]を検索して、無料でダウンロードしてくださいDSA-C03受験対策書
- DSA-C03日本語サンプル 👟 DSA-C03日本語サンプル 😕 DSA-C03模擬対策 🆖 ☀ DSA-C03 ️☀️の試験問題は{ www.goshiken.com }で無料配信中DSA-C03技術内容
- 便利なDSA-C03合格記 - 合格スムーズDSA-C03合格率 | 有効的なDSA-C03ファンデーション 📸 ✔ www.jpshiken.com ️✔️で⏩ DSA-C03 ⏪を検索して、無料で簡単にダウンロードできますDSA-C03日本語学習内容
- DSA-C03試験の準備方法|実際的なDSA-C03合格記試験|ユニークなSnowPro Advanced: Data Scientist Certification Exam合格率 🌌 ウェブサイト▷ www.goshiken.com ◁を開き、☀ DSA-C03 ️☀️を検索して無料でダウンロードしてくださいDSA-C03シュミレーション問題集
- Snowflake DSA-C03:SnowPro Advanced: Data Scientist Certification Exam試験をよく準備されたDSA-C03合格記で効果的に研究する 🥜 《 www.jpexam.com 》は、【 DSA-C03 】を無料でダウンロードするのに最適なサイトですDSA-C03受験トレーリング
- DSA-C03資格受験料 🔁 DSA-C03受験対策書 👸 DSA-C03日本語学習内容 😢 ⮆ www.goshiken.com ⮄に移動し、➠ DSA-C03 🠰を検索して、無料でダウンロード可能な試験資料を探しますDSA-C03模擬試験問題集
- DSA-C03受験料過去問 ⬅ DSA-C03日本語解説集 ⚾ DSA-C03シュミレーション問題集 🎻 《 DSA-C03 》の試験問題は⏩ www.passtest.jp ⏪で無料配信中DSA-C03受験対策書
- DSA-C03 Exam Questions
- shop1.thelion99.com academy.iluvquran.com y.hackp.net 47.121.119.212 www.trainingforce.co.in joumanamedicalacademy.de ubaxacademy.com mn-biotaiba.com yorubalearners.com tebbtakamuli.com